TT Technologies, Inc.

- Trenchless construction equipment manufacturer
 - Pipebursting, Pipe Ramming, Horizontal Boring, Horizontal Directional Drilling, Etc.
- Trenchless is our ONLY business
 - Has been since 1991 (TT founded)
 - Technologies and experience since 1962
- Trenchless equipment used for:
 - Gas, Electric, Telecom, Water (sanitary, drinking and storm)

What is the PROBLEM?

Deteriorating pipe:
- Service lines
 - Plastics
 - Copper
- Main lines
 - Steel
 - Plastics
 - Cast Iron

Company Profile

TT Technologies, Inc.

- Trenchless construction equipment manufacturer
 - Pipebursting, Pipe Ramming, Horizontal Boring, Horizontal Directional Drilling, Etc.
- Trenchless is our ONLY business
 - Has been since 1991 (TT founded)
 - Technologies and experience since 1962
- Trenchless equipment used for:
 - Gas, Electric, Telecom, Water (sanitary, drinking and storm)
Information Gathered from PG&E in California:

- Pacific Gas and Electric Co. has confirmed that segments of natural gas pipeline it is replacing in Marin are made of a plastic known since 1982 to be at high risk of failure under certain circumstances.

- Concern about the pipe, a DuPont product known as Aldyl-A, spiked last year after pipe failures resulted in two explosions, the first in a Cupertino condominium, and then less than a month later beneath a commercial intersection in Roseville.

- Gene Palermo, a former chemist with DuPont who now works as a private consultant, said DuPont notified PG&E in 1982 that Aldyl-A pipe manufactured before 1973 is prone to cracking. Palermo said if pre-1973 Aldyl-A pipe is pressed by soil against rocks or other hard surfaces, it can fail in as little as five years.

- Brittany McKannay, a PG&E spokeswoman, said all of the Aldyl-A pipe in Marin, some 51 miles of it, was made before 1973. PG&E is currently replacing 1,000 feet of pre-1973 Aldyl-A pipe in San Anselmo and is preparing to replace another 800 feet of the pipe in Mill Valley.

- In October 2011, following the Aldyl-A pipe failures that resulted in fires, PG&E announced it would replace 1,231 miles of the pre-Aldyl-A over the next three years.
Trenchless New Installation

HDD – Horizontal Directional Drilling

Mini-HDD Drill Rig Benefits:

- Compact
 - Typically can fit through gated fence opening
- Portable
 - Easily transported with 1 ton truck and trailer
- Highly maneuverable
 - Due to size can navigate tight areas
- Extremely powerful for size
 - 9,800 lbs. of thrust and pullback
 - 1,100 ft-lbs. of rotational torque
- Install new pipe up to 6” in diameter

2008 HDD Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost/ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pipe installed (includes main & serv.)</td>
<td>32,576ft.</td>
</tr>
<tr>
<td>Actual 2008 employee labor w/tax & pr taxes</td>
<td>$518,338</td>
</tr>
<tr>
<td>HDD Machine Cost</td>
<td>$126,767</td>
</tr>
<tr>
<td>HDD Trailer (from STS Trailer Sales)</td>
<td>$14,000</td>
</tr>
<tr>
<td>Equipment Total</td>
<td>$140,767</td>
</tr>
<tr>
<td>Crew Truck cost ($1,100x12 months)</td>
<td>$13,200</td>
</tr>
<tr>
<td>Pick-Up Truck Cost ($750x12 months)</td>
<td>$9,000</td>
</tr>
<tr>
<td>Vehicle cost</td>
<td>$22,200</td>
</tr>
<tr>
<td>Totals</td>
<td>$681,305</td>
</tr>
</tbody>
</table>

Note: Approx. 3,000 ft of main was installed in RI

2008 HDD Cost Saving Calculations

- 2008 Central Region conventionally installed 33,175 ft of replacement main by in-house crews at $96.41/ft
- 2008 Ave cost to install new services conventionally by in-house crews was $2,314 per service, ave length per service was 75 ft, or $30.85/ft.
- Weighted average cost per foot for repl. main and new services above is $53.06. (This is the work included in the HDD cost per foot on previous page)
- The above main job costs include tie-ins, which is not in the HDD costs.
- Assuming it costs approximately $10/ft. for the main tie-ins, savings potential could be ($53.06 - $10) vs. HDD cost/ft. $20.91
 - $22.15/ft.
2008 HDD Cost Saving Calculations

- So, for discussion sake, we should estimate a conservative range of savings from $10/ft to $20/ft based on the previous bullet of $22.15/ft in savings.

- Assuming we will install another 32,500 ft, potential cost savings could be from $325,000 to $650,000 annually.

- The payback for the $140,767 equipment cost could be achieved by installing as little as 7,038 ft to as much as 14,076 ft, based on the cost savings range from above.
Trenchless New Installation

Pit Launched HDD

- Length = 44"
- Width = 18.75"
- Height = 14.5"
- Weight = 440 lbs.

Horizontal Boring Tools

- New Service Installs – (PE, Copper, New Bendable Multilayer Composite Pipe)
- Less Excavation & Restoration
- Lower Cost Alternative
- High Production

- Pull Pipe
- Drive Pipe
- Burst Pipe
- Reversible
- Accurate
Safety

- Locate Peripheral Utilities
- Clearly Mark
- Good Communication
- Someone Always Attending to Air Supply
- ALWAYS Pot-Hole When Crossing Utility
- Minimum Depth

Working Depth for Bores

Depth = 10X Tool Dia.
Width = 4X Tool Dia.

Tools Specs and Sizes

- Diameter: 1 ¾” through 7”
- Weight: 19 lbs. through 573 lbs.
- Length: 39” through 87”
- Piston Stoke/Min.: 580 through 280

What about ACCURACY?

Reciprocating Head vs Solid Head Tool
• In-line lubricator used
• Lubricant travels in the air system
• Promotes long tool life
• Biodegradable, non-toxic air tool lubricant
Trenchless New Installation

Horizontal Boring Tools

- Pipe Extraction
- Remove Existing Line
- Pipe Pushing Adapter
- Receiving Pit for Old Line

Trenchless Rehabilitation

Mainline and Service Line

Numerous Trenchless Rehab Options Available:

- Split and Pull pneumatic system
- Pull and Split winching system
- Hydraulic pipe splitting system
- Mini-winch splitting system
- Mini-pipe splitter technology

Trenchless Rehabilitation

Split & Pull Pneumatic System

Trenchless Rehabilitation

Typical Jobsite
Development of the System

- Southwest Gas Corporation (SWG) began using the “Split & Pull” method in Northern Nevada in 2001
- One year later they determined the “Split & Pull” method with the “keyhole” process would significantly improve efficiency
- Other Benefits:
 - Substantial reduce pavement restoration costs
 - Improve relationships with customers and enforcement authorities

(Information provided by SWG)

Cost Saving Example

Open Trench:
500’ of PVC Main w/10 Services
500 x 3.8 = 1,900 Square Feet of Pavement Restoration Required

Split & Pull w/Keyhole:
500’ of PVC Main w/10 Services
500 x 0.5 = 250 Square Feet of Pavement Restoration Required

(Information Provided by SWG)

Development of the System

- In 2007 SWG began discussion with TT Technologies to research and develop additional tooling and processes for the “Split & Pull” method
- The main focus was to develop and refine tooling and equipment that could split 2” PVC/PE and pull in 3” PE sleeving in one process at greater distances

(Information Provided by SWG)
Trenchless Rehabilitation
Split & Pull Pneumatic System

The Process

– A winch at the receiving pit which provided
 • Pulling assistance for a pneumatic tool
 • Improved guidance

– A pneumatic tool consisting of
 • Splitting head
 • Lubricating jets
 • Expander
 • Coupled to 3” sleeving

Pre-Inspection

Prior to performing any “Split and Pull” process, a live insertion camera is utilized to verify there are no obstructions within the pipeline that would hinder the process

– Examples: drops, offsets, repair couplings, etc
Field Trials

First field trial June 2009
- 150’ of “Split and Pull” on PVC pipe while installing 3” sleeving
- Time to complete the installation was approx. 2 hours

Second field trial August 2009
- 300’ of “Split and Pull” on PVC pipe while installing 3” sleeving
- Time to complete the installation was approx. 41 minutes

Both pulls were performed in caliche type soil

Project Goals

The goal at SWG is to complete 300’- 500’ per day, including all affected services.

SWG WAS ABLE TO MEET THIS GOAL AND CURRENTLY HAS NUMEROUS CREWS UTILIZING THE SPLIT & PULL PROCESS.
Trenchless Rehabilitation

Pull & Split Winching System

- Equipment is powered by a hydraulic power pack.
- “Quicklock” bursting rods are guided through existing host pipe with a “guide rod” and attached to new pipe which is pulled back towards you.
- While pulling back the “Quicklock” burst rods, the tool and expander fracture the host pipe, displacing the fragments into the surrounding soil while pulling in the new pipe with forces up to 600,000 lbs.

Hydraulic Pipe Splitting System
Pipe bursting is the eco-friendly trenchless method which replaces existing host pipes by displacing their fragments into the surrounding soil while simultaneously pulling in new product pipe of the same or large diameter into the void created.

Soil Conditions

BEST
- Original backfill
- Expandable clay
- Loose cobble
- Beach & running sand
- Densely compacted clay

DIFFICULTY

WORST
- Sandstone

* Need the ability to expand and reduce soil friction and pipe drag
Pipebursting is a race against time …

- Need to expand enough to “overcut” and minimize “drag”. Ex: 8” new pipe requires an 11” O.D. expander.
- Need stable soil conditions to maintain hole
- What if my soils are unstable?
 - Consider shortening burst runs
 - Possible pipe lubrication
 - Minimize downtime
 » e.g. Consider using a fusion weld type pipe (PVC or HDPE) in lieu of a retrained joint cartridge load type pipe

Pipebursting® Technology

Race Against Time

Pipebursting® Technology

Lubrication

- Small diameter, good soil
- Medium diameter
- Large diameter
- Large diameter, poor soil

MAYBE

USE

ALWAYS

Use polymers in clay soils.
Use bentonites in most other soils.
* Contact your lubrication provider to discuss each project.

Pipebursting® Technology

Original Trench Width

- How was original pipe placed?
 - Was it placed in a rock trench?
 - Is there enough room for expansion?
 - What type of backfill and compaction?
- If crossing a road or highway …
 - Is there a casing pipe?
 - Is there a concrete over pour?

Pipebursting® Technology

Adjacent Utilities

- Ground movement during a pipeburst operation may damage nearby pipes and structures.
 - A general rule, both horizontal and vertical distance between the pipe to be burst and the existing adjacent pipe should be at least two diameters of the replacement pipe. (e.g. 8” to 10” pipeburst should be 20” clear (horizontal and vertical) from all utilities)
Pipebursting Technology

Crossing Utilities

- If crossing an existing utility with a pipeburst operation, exposing the utility to locate is ALWAYS proper protocol.
 - Pothole the existing utility to obtain proper alignment and depth clearance
 - If within the zone of pipebursting influence, proper care must be taken to protect the existing utility
- Vacuum excavate surrounding soil to relieve the influence on the existing utility
Trenchless Rehabilitation

Mini-Winch Splitting System

Trenchless Rehabilitation

Mini-Winch Splitting System

Trenchless Rehabilitation

Mini-Winch Splitting System

Trenchless Rehabilitation

Mini-Winch Splitting System
Case Study
- Replacement from Meter to the 2” Main at the sidewalk
- Temporary Service Maintained
- 2 small excavations
- 2-Bladed Cutter to split ¼” Aldyl-A pipe
- Expander Body to Expand split pipe
- New ½” CTS PE Replacement Pipe pulled in
Trenchless Rehabilitation
Mini-Winch Splitting System

Drill Guide to Make Required “Weak Link” in New Pipe

Cutter, Expander and New 1/2” Pipe with Tracer Wire

Splitting Process Begins

Old Riser Removed
Old Connection to Meter Set

Constant Tension Winch

6 Ton Down Hole Pulling Power

New Service Pipe
Case Study Conclusions

- New 25’ service installed with minimal excavation
- Service can be replaced with ½” or 1”
- Aldyl-A pipe split successfully
- Service splitting accomplished in a few minutes
- No damage to the new service pipe
Trenchless Rehabilitation

Mini-Pipe Splitter Technology

Pipebursting® Technology

Recommended Technical Publications

- North American Society for Trenchless Technology (NASTT) – Pipe Bursting Good Practices Guidelines
 - http://www.nastt.org/node/7951
- American Society of Civil Engineers (ASCE) – Manual of Practice for Pipe Bursting Projects
- International Pipe Bursting Association (IPBA) – Guideline for Pipe Bursting